Publications

Quantitative models for marine ecosystem-based management are often constrained by availability of observations. Uncertainty about the underlying system structure can affect model estimates and conclusions about the consequences of management actions. Qua

Publication date
December 21, 2016
Authors
Ruben van Hooidonk, Jeffrey Maynard, Jerker Tamelander, Jamison Gove, Gabby Ahmadia, Laurie Raymundo, Gareth Williams, Scott F. Heron, Serge Planes
Abstract

Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500 km2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.

Journal
Scientific Reports
DOI
https://doi.org/10.1038/srep39666
Region
Hawaii